Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Theor Appl Genet ; 137(3): 54, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38381205

ABSTRACT

KEY MESSAGE: Integrated phenomics, ionomics, genomics, transcriptomics, and functional analyses present novel insights into the role of pectin demethylation-mediated cell wall Na+ retention in positively regulating salt tolerance in oilseed rape. Genetic variations in salt stress tolerance identified in rapeseed genotypes highlight the complicated regulatory mechanisms. Westar is ubiquitously used as a transgenic receptor cultivar, while ZS11 is widely grown as a high-production and good-quality cultivar. In this study, Westar was found to outperform ZS11 under salt stress. Through cell component isolation, non-invasive micro-test, X-ray energy spectrum analysis, and ionomic profile characterization, pectin demethylation-mediated cell wall Na+ retention was proposed to be a major regulator responsible for differential salt tolerance between Westar and ZS11. Integrated analyses of genome-wide DNA variations, differential expression profiling, and gene co-expression networks identified BnaC9.PME47, encoding a pectin methylesterase, as a positive regulator conferring salt tolerance in rapeseed. BnaC9.PME47, located in two reported QTL regions for salt tolerance, was strongly induced by salt stress and localized on the cell wall. Natural variation of the promoter regions conferred higher expression of BnaC9.PME47 in Westar than in several salt-sensitive rapeseed genotypes. Loss of function of AtPME47 resulted in the hypersensitivity of Arabidopsis plants to salt stress. The integrated multiomics analyses revealed novel insights into pectin demethylation-mediated cell wall Na+ retention in regulating differential salt tolerance in allotetraploid rapeseed genotypes. Furthermore, these analyses have provided key information regarding the rapid dissection of quantitative trait genes responsible for nutrient stress tolerance in plant species with complex genomes.


Subject(s)
Arabidopsis , Brassica napus , Brassica rapa , Salt Tolerance/genetics , Brassica napus/genetics , Pectins , Salt Stress , Cell Wall , Demethylation
2.
Quant Imaging Med Surg ; 14(1): 432-446, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38223051

ABSTRACT

Background: Risk factors for colorectal cancer (CRC) affect the way patients are subsequently treated and their prognosis. Dual-energy computerized tomography (DECT) is an advanced imaging technique that enables the quantitative evaluation of lesions. This study aimed to evaluate the quality of DECT images based on the Mono+ algorithm in CRC, and based on this, to assess the value of DECT in the diagnosis of CRC risk factors. Methods: This prospective study was performed from 2021 to 2023. A dual-phase DECT protocol was established for consecutive patients with primary CRC. The signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), overall image quality, lesion delineation, and image noise of the dual-phase DECT images were assessed. Next, the optimal energy-level image was selected to analyze the iodine concentration (IC), normalized iodine concentration (NIC), effective atomic number, electron density, dual-energy index (DEI), and slope of the energy spectrum curve within the tumor for the high- and low-risk CRC groups. A multifactor binary logistic regression analysis was used to construct a differential diagnostic regression model for high- and low-risk CRC, receiver operating characteristic (ROC) curves were plotted, and the area under the curve (AUC) was calculated to assess the diagnostic value of the model. Results: A total of 74 patients were enrolled in this study, of whom 41 had high-risk factors and 33 had low-risk factors. The SNR and CNR were best at 40 keV virtual monoenergetic imaging (VMI) based on the Mono+ algorithm (VMI+) (SNR 8.79±1.27, P<0.001; CNR 14.89±1.77, P=0.027). The overall image quality and lesion contours were best at 60 keV VMI+ and 40 keV VMI+, respectively (P=0.001). Among all the DECT parameters, the arterial phase (AP)-IC, NIC, DEI, energy spectrum curve, and venous phase-NIC differed significantly between the two groups. The AP-IC was the optimal DECT parameter for predicting high- and low-risk CRC with AUC, sensitivity, specificity, and cut-off values of 0.96, 97.06%, 87.80%, and 2.94, respectively, and the 95% confidence interval (CI) of the AUC was 0.88-0.99. Integrating the clinical factors and DECT parameters, the AUC, sensitivity, specificity, and predictive accuracy of the model were 0.99, 100.00%, 92.68%, and 94.67%, respectively, and the 95% CI of the AUC was 0.93-1.00. Conclusions: The DECT parameters based on 40 keV noise-optimized VMI+ reconstruction images depicted the CRC tumors best, and the clinical DECT model may have significant implications for the preoperative prediction of high-risk factors in CRC patients.

3.
J Agric Food Chem ; 72(4): 2381-2396, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38232380

ABSTRACT

Variations in the resistance to potassium (K) deficiency among rapeseed genotypes emphasize complicated regulatory mechanisms. In this study, a low-K-sensitivity accession (L49) responded to K deficiency with smaller biomasses, severe leaf chlorosis, weaker photosynthesis ability, and deformed stomata morphology compared to a low-K resistant accession (H280). H280 accumulated more K+ than L49 under low K. Whole-genome resequencing (WGS) revealed a total of 5,538,622 single nucleotide polymorphisms (SNPs) and 859,184 insertions/deletions (InDels) between H280 and L49. RNA-seq identified more differentially expressed K+ transporter genes with higher expression in H280 than in L49 under K deficiency. Based on the K+ profiles, differential expression profiling, weighted gene coexpression network analysis, and WGS data between H280 and L49, BnaC4.AKT1 was proposed to be mainly responsible for root K absorption-mediated low K resistance. BnaC4.AKT1 was expressed preferentially in the roots and localized on the plasma membrane. An SNP and an InDel found in the promoter region of BnaC4.AKT1 were proposed to be responsible for its differential expression between rapeseed genotypes. This study identified a gene resource for improving low-K resistance. It also facilitates an integrated knowledge of the differential physiological and transcriptional responses to K deficiency in rapeseed genotypes.


Subject(s)
Brassica napus , Brassica rapa , Potassium Deficiency , Brassica napus/genetics , Brassica napus/metabolism , Potassium Deficiency/genetics , Brassica rapa/metabolism , Genotype , Genomics , Gene Expression Regulation, Plant
4.
Gene ; 894: 148025, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38007163

ABSTRACT

Rapeseed (Brassica napus L.) is susceptible to nutrient stresses during growth and development; however, the CPA (cation proton antiporter) family genes have not been identified in B. napus and their biological functions remain unclear. This study was aimed to identify the molecular characteristics of rapeseed CPAs and their transcriptional responses to multiple nutrient stresses. Through bioinformatics analysis, 117 BnaCPAs, consisting of three subfamilies: Na+/H+ antiporter (NHX), K+ efflux antiporter (KEA), and cation/H+ antiporter (CHX), were identified in the rapeseed genome. Transcriptomic profiling showed that BnaCPAs, particularly BnaNHXs, were transcriptionally responsive to diverse nutrient stresses, including Cd toxicity, K starvation, salt stress, NH4+ toxicity, and low Pi. We found that the salt tolerance of the transgenic rapeseed lines overexpressing BnaA05.NHX2 was significantly higher than that of wild type. Subcellular localization showed that BnaA05.NHX2 was localized on the tonoplast, and TEM combined with X-ray energy spectrum analysis revealed that the vacuolar Na+ concentrations of the BnaA05.NHX2-overexpressing rapeseed plants were significantly higher than those of wild type. The findings of this study will provide insights into the complexity of the BnaCPA family and a valuable resource to explore the in-depth functions of CPAs in B. napus.


Subject(s)
Brassica napus , Brassica rapa , Brassica napus/genetics , Antiporters/genetics , Protons , Brassica rapa/genetics , Vacuoles , Gene Expression Regulation, Plant , Stress, Physiological
5.
Opt Lett ; 48(10): 2571-2574, 2023 May 15.
Article in English | MEDLINE | ID: mdl-37186711

ABSTRACT

Two-dimensional (2D) antiferromagnetic semiconductor chromium thiophosphate (CrPS4) has gradually become a major candidate material for low-dimensional nanoelectromechanical devices due to its remarkable structural, photoelectric characteristics and potentially magnetic properties. Here, we report the experimental study of a new few-layer CrPS4 nanomechanical resonator demonstrating excellent vibration characteristics through the laser interferometry system, including the uniqueness of resonant mode, the ability to work at the very high frequency, and gate tuning. In addition, we demonstrate that the magnetic phase transition of CrPS4 strips can be effectively detected by temperature-regulated resonant frequencies, which proves the coupling between magnetic phase and mechanical vibration. We believe that our findings will promote the further research and applications of the resonator for 2D magnetic materials in the field of optical/mechanical signal sensing and precision measurement.

6.
Plant Cell Environ ; 46(2): 567-591, 2023 02.
Article in English | MEDLINE | ID: mdl-36358019

ABSTRACT

Wheat plants are ubiquitously simultaneously exposed to salinity and limited iron availability caused by soil saline-alkalisation. Through this study, we found that both low Fe and NaCl severely inhibited the growth of seminal roots in wheat seedlings; however, sufficient Fe caused greater growth cessation of seminal roots than low Fe under salt stress. Low Fe improved the root meristematic division activity, not altering the mature cell sizes compared with sufficient Fe under salt stress. Foliar Fe spray and split-root experiments showed that low Fe-alleviating the salinity-induced growth cessation of seminal roots was dependent on local low Fe signals in the roots. Ionomics combined with TEM/X-ray few differences in the root Na+ uptake and vacuolar Na+ sequestration between two Fe levels under salt stress. Phytohormone profiling and metabolomics revealed salinity-induced overaccumulation of ACC/ethylene and tryptophan/auxin in the roots under sufficient Fe than under low Fe. Differential gene expression, pharmacological inhibitor addition and the root growth performance of transgenic wheat plants revealed that the rootward auxin efflux and was responsible for the low Fe-mediated amelioration of the salinity-induced growth cessation of seminal roots. Our findings will provide novel insights into the modulation of crop root growth under salt stress.


Subject(s)
Seedlings , Triticum , Seedlings/metabolism , Triticum/genetics , Salinity , Plants, Genetically Modified , Iron/metabolism , Indoleacetic Acids/metabolism , Plant Roots/metabolism
7.
Int J Mol Sci ; 23(22)2022 Nov 21.
Article in English | MEDLINE | ID: mdl-36430962

ABSTRACT

The GARP genes are plant-specific transcription factors (TFs) and play key roles in regulating plant development and abiotic stress resistance. However, few systematic analyses of GARPs have been reported in allotetraploid rapeseed (Brassica napus L.) yet. In the present study, a total of 146 BnaGARP members were identified from the rapeseed genome based on the sequence signature. The BnaGARP TFs were divided into five subfamilies: ARR, GLK, NIGT1/HRS1/HHO, KAN, and PHL subfamilies, and the members within the same subfamilies shared similar exon-intron structures and conserved motif configuration. Analyses of the Ka/Ks ratios indicated that the GARP family principally underwent purifying selection. Several cis-acting regulatory elements, essential for plant growth and diverse biotic and abiotic stresses, were identified in the promoter regions of BnaGARPs. Further, 29 putative miRNAs were identified to be targeting BnaGARPs. Differential expression of BnaGARPs under low nitrate, ammonium toxicity, limited phosphate, deficient boron, salt stress, and cadmium toxicity conditions indicated their potential involvement in diverse nutrient stress responses. Notably, BnaA9.HHO1 and BnaA1.HHO5 were simultaneously transcriptionally responsive to these nutrient stresses in both hoots and roots, which indicated that BnaA9.HHO1 and BnaA1.HHO5 might play a core role in regulating rapeseed resistance to nutrient stresses. Therefore, this study would enrich our understanding of molecular characteristics of the rapeseed GARPs and will provide valuable candidate genes for further in-depth study of the GARP-mediated nutrient stress resistance in rapeseed.


Subject(s)
Brassica napus , Brassica rapa , Brassica napus/genetics , Brassica rapa/genetics , Nutrients , Plant Development , Family
8.
BMC Plant Biol ; 22(1): 502, 2022 Oct 27.
Article in English | MEDLINE | ID: mdl-36289462

ABSTRACT

BACKGROUND: Soil salinization has become a global problem restricting the seed yield and quality of crops, including wheat (Triticum aestivum L.). Salinity significantly alters plant morphology and severely disrupts physiological homeostasis. Salt tolerance of wheat has been widely studied whereas core ion transporters responsive to salt stress remain elusive. RESULTS: In this study, the wheat seedlings were subjected to salinity toxicity for morpho-physiological and transcriptomic analysis of wheat salt tolerance. There was a inversely proportional relationship between salt concentrations and morpho-physiological parameters. Under the condition of 100 mM NaCl, the H2O2, O2-, MDA content and membrane permeability were significantly increased whereas the chlorophyll content was markedly decreased. Under salt stress, a larger proportion of Na+ was partitioned in the roots than in the shoots, which had a lower Na+/K+ ratio and proline content. Salt stress also obviously affected the homeostasis of other cations. Genome-wide transcriptomic analysis showed that a total of 2,807 and 5,570 differentially expressed genes (DEGs) were identified in the shoots and roots, respectively. Functionality analysis showed that these DEGs were mainly enriched in the KEGG pathways related to carbon metabolism, phenylalanine, and amino acid biosynthesis, and were primarily enriched in the GO terms involving proline metabolism and redox processes. The Na+ transporter genes were upregulated under salt stress, which repressed the gene expression of the K+ transporters. Salt stress also significantly elevated the expression of the genes involved in osmoregulation substances biosynthesis, and obviously affected the expression profiling of other cation transporters. Co-expression network analysis identified TaNHX6-D5/TaNHX4-B7 and TaP5CS2-B3 potentially as core members regulating wheat salt tolerance. CONCLUSIONS: These results might help us fully understand the morpho-physiological and molecular responses of wheat seedlings to salt stress, and provide elite genetic resources for the genetic modification of wheat salt tolerance.


Subject(s)
Seedlings , Triticum , Triticum/metabolism , Seedlings/genetics , Seedlings/metabolism , Osmoregulation , Hydrogen Peroxide/metabolism , Sodium Chloride/metabolism , Salt Stress/genetics , Salinity , Sodium/metabolism , Chlorophyll/metabolism , Proline/metabolism , Carbon/metabolism , Nutrients , Soil , Phenylalanine/metabolism , Amino Acids/metabolism , Stress, Physiological/genetics
9.
J Exp Bot ; 73(22): 7516-7537, 2022 12 08.
Article in English | MEDLINE | ID: mdl-36063365

ABSTRACT

Cadmium (Cd) is a highly toxic heavy metal that readily enters cereals, such as wheat, via the roots and is translocated to the shoots and grains, thereby posing high risks to human health. However, the vast and complex genome of allohexaploid wheat makes it challenging to understand Cd resistance and accumulation. In this study, a Cd-resistant cultivar of wheat, 'ZM1860', and a Cd-sensitive cultivar, 'ZM32', selected from a panel of 442 accessions, exhibited significantly different plant resistance and grain accumulation. We performed an integrated comparative analysis of the morpho-physiological traits, ionomic and phytohormone profiles, genomic variations, transcriptomic landscapes, and gene functionality in order to identify the mechanisms underlying these differences. Under Cd toxicity, 'ZM1860' outperformed 'ZM32', which showed more severe leaf chlorosis, poorer root architecture, higher accumulation of reactive oxygen species, and disordered phytohormone homeostasis. Ionomics showed that 'ZM32' had a higher root-to-shoot translocation coefficient of Cd and accumulated more Cd in the grains than 'ZM1860'. Whole-genome re-sequencing (WGS) and transcriptome sequencing identified numerous DNA variants and differentially expressed genes involved in abiotic stress responses and ion transport between the two genotypes. Combined ionomics, transcriptomics, and functional gene analysis identified the plasma membrane-localized heavy metal ATPase TaHMA2b-7A as a crucial Cd exporter regulating long-distance Cd translocation in wheat. WGS- and PCR-based analysis of sequence polymorphisms revealed a 25-bp InDel site in the promoter region of TaHMA2b-7A, and this was probably responsible for the differential expression. Our multiomics approach thus enabled the identification of a core transporter involved in long-distance Cd translocation in wheat, and it may provide an elite genetic resource for improving plant Cd resistance and reducing grain Cd accumulation in wheat and other cereal crops.


Subject(s)
Cadmium , Triticum , Multiomics , Triticum/genetics
10.
Front Cell Neurosci ; 16: 823320, 2022.
Article in English | MEDLINE | ID: mdl-35308119

ABSTRACT

Background: Hypoxic-ischemic encephalopathy (HIE) occurs when an infant's brain has not received adequate oxygen and blood supply, resulting in ischemic and hypoxic damage. Currently, supportive care and hypothermia therapy have been the standard treatment for HIE. However, there are still over 20% of treated infants died and 19-30% survived with significant disability. HIE animal model was first established by Rice et al., involving the ligation of one common carotid artery followed by hypoxia. In this study, we investigated human umbilical cord blood (HUCB) and its two components mononuclear cell (MNC) and red cell fraction (RCF) in both short and long term study using a modified HIE rat model. Methods: In this modified HIE model, both common carotid arteries were occluded, breathing 8% oxygen in a hypoxic chamber for 60-min, followed by the release of the common carotid arteries ligature, mimicking reperfusion injury. For cell therapeutic study, cells were intravenously injected to HIE rat pups, and both behavioral and histological changes were assessed at selected time points. Result: Statistically significant behavioral improvements were demonstrated on Day 7 and 1 month between saline treated HIE rats and UCB/MNC treated rats. However, at 3 months, the therapeutic improvements were only showed between saline treated HIE animals and MNC treated HIE rats. For histological analysis 1 month after cell injection, the number of functional neurons were statistically increased between saline treated HIE and UCB/MNC/RCF treated HIE rats. At 3 months, the significant increase in functional neurons was only present in MNC treated HIE rats. Conclusion: We have used a bilateral temporary occlusion of 60 min, a moderately brain damaged model, for cell therapeutic studies. HUCB mononuclear cell (MNC) therapy showed benefits in neonatal HIE rats in both short and long term behavioral and histological assessments.

11.
Heliyon ; 7(12): e08646, 2021 Dec.
Article in English | MEDLINE | ID: mdl-35024484

ABSTRACT

BACKGROUND: Hypoxic-Ischemic Encephalopathy (HIE) occurs when an infant's brain does not receive adequate blood and oxygen supply, resulting in ischemic and hypoxic brain damage during delivery. Currently, supportive care and hypothermia have been the standard treatment for HIE. However, there are still a 20% mortality and most of the survivors are associated with significant neurodevelopmental disability. HIE animal model was first established by Vannucci et al., in 1981, and has been used extensively to explore the mechanisms of brain damage and its potential treatment. The Vannucci model involves the unilateral common carotid artery occlusion followed by 90 min hypoxia (8% oxygen). The purpose of this study is to define and validate a modified HIE model which mimics closely that of the human neonatal HIE. METHOD: The classic Vannucci HIE model occludes one common carotid artery followed by 90 min hypoxia. In the new model, common carotid arteries were occluded bilaterally followed by breathing 8% oxygen in a hypoxic chamber for 90, 60 and 30 min, followed by the release of the common carotid artery ligatures, mimicking a reperfusion. RESULT: We studied 110 neonatal rats in detail, following the modified in comparison with the classical Vannucci models. The classical Vannucci model has a consistent surgical mortality of 18% and the new modified models have a 20%-46%. While mortality depended on the duration of hypoxia, fifty-two animals survived for behavioral assessments and standard histology. The modified HIE model with 60 min of transient carotid occlusion is associated with a moderate brain damage, and has a 30% surgical mortality. This modified experimental model is regarded closer to the human situation than the classical Vannucci model.

12.
Front Neurol ; 7: 224, 2016.
Article in English | MEDLINE | ID: mdl-27999562

ABSTRACT

OBJECTIVE: This study aimed to assess the clinicoradiological features and treatment outcomes of intracranial dissecting aneurysms (IDAs) in childhood. METHODS: We conducted a retrospective study of pediatric patients who were treated for spontaneous IDAs in our institute between January 2010 and December 2015. The clinical presentation, aneurysm characteristics, treatment modality, and outcome were studied. RESULTS: We studied 26 pediatric patients (mean age, 13.4 years; range, 4-18 years) with 31 IDAs who comprised 6.9% of all IDA patients treated during the same period. Seventeen (65.4%) patients were males, and nine (34.6%) were females. The incidence of large (≥10 mm in size) or giant aneurysms (≥25 mm in size) was 65.5%. Twenty-one (80.8%) patients underwent endovascular or surgical treatment and five (19.2%) received conservative treatment. Perioperative complications occurred in three patients, in whom two eventually recovered completely with a Glasgow Outcome Scale (GOS) score of 5 and one partially recovered with a GOS score 4. Overall, 25 (96.2%) patients had a favorable outcome and one (3.8%) had an unfavorable outcome at a mean follow-up of 22.8 months (range, 6-60 months). CONCLUSION: Pediatric IDAs are rare. In this series, endovascular management was a relatively safe and effective method of treatment for pediatric IDAs. However, continued follow-up is required because of the possibility of aneurysm recurrence and de novo aneurysm formation after treatment.

13.
Arch Dermatol Res ; 308(6): 429-36, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27221282

ABSTRACT

Pemphigus and bullous pemphigoid (BP) are severe autoimmune skin diseases. Whether innate immunity could be a trigger or a part of the pathogeneses is unknown. Toll-like receptors (TLRs) are important components of the innate immune system, with no previous evaluation of TLRs in autoimmune bullous diseases. This work aims to investigate TLRs 2, 4, and 9 expressions in pemphigus and bullous pemphigoid. Thirty-six patients with pemphigus vulgaris (PV), pemphigus foliaceus (PF), bullous pemphigoid (BP), and six healthy controls were studied. Skin biopsies from the patients and the controls were examined immunohistochemically for TLR2, 4, and 9 expressions. The TLR4 expressed mainly at the basal layer of epidermis in controls, but in the cases with autoimmune bullous diseases, TLR4 staining located at basal layer and suprabasal layer, even superficial layer of epidermis. The immunostaining-intensity-distribution (IID) index of TLR4 in patients with PF (13.83, P = 0.001), PV (13.08, P = 0.003), and BP (11.42, P = 0.042) were significantly higher than that of the controls (6.17). TLR2 and TLR9 showed no significantly changes at epidermal expression (P > 0.05) compared with controls. There was no correlation found between the expressions of these TLRs. This work, thus, shows a re-localization of TLR4 expression sites with increased expression in pemphigus and bullous pemphigoid lesions. Targeting TLR4 signaling is expected to be a novel treatment strategy for autoimmune bullous diseases.


Subject(s)
Pemphigoid, Bullous/metabolism , Pemphigus/metabolism , Skin/metabolism , Toll-Like Receptor 2/metabolism , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 9/metabolism , Adult , Biopsy , Female , Humans , Immunity, Innate , Immunohistochemistry , Male , Middle Aged , Molecular Targeted Therapy , Pemphigoid, Bullous/immunology , Pemphigus/immunology , Skin/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...